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● Data-driven approaches for solving differential equations often share 

similar objectives to those we have seen in high-dimensional time series.

● One caveat for this talk: Nothing stochastic. But some stochastic 

extensions to SPDEs exist.

Application: Data driven approaches for solving PDEs
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● Goal: Data-driven approaches for physics 

simulation and ST dynamics

● As we adopt a data-driven approach, two things 

emerge: the projection into the latent space and the 

evolution based on the latent state dynamics

● Contents

○ Classic Physics Informed Approaches

○ From Linear Projection to Autoencoder

○ Learning Latent Dynamics

○ Recent Approaches

Contents
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Classic (Physics-Informed) Approaches



● PDEs can be written in ODE form by applying spatial discretization.

Data driven approaches for solving PDEs



● PDEs can be written in ODE form by applying spatial discretization.

E.g.  Viscid 1D Burgers Equation : solve u(x,t) such that 

with some initial condition and boundary condition                                                .

Spatially discretize the x into uniform grid points for fixed time t:

Data driven approaches for solving PDEs



● PDEs can be written in ODE form by applying spatial discretization.

● Governing Physics (ODE): 

● Full Order Model:

Solve time-discretization:

Physics - Informed 

Backward time integrator

Classic data-driven approaches for solving PDEs

Basic Structure



● Governing Physics (ODE): 

● Reduced Order Model:

Linear subspace projection: project                        into a latent reduced space  

Linear Subspace Projection

Collect data across several Obtain projection matrix by SVD

Classic data-driven approaches for solving PDEs



Data-Driven

Physics - Informed 

● Governing Physics (ODE): 

● Reduced Order Model:

Linear subspace projection: project                       into a latent reduced space  

Collect data across several Obtain projection matrix by SVD

evolve within the latent space

Linear Subspace Projection

Classic data-driven approaches for solving PDEs



From Linear Projection to Autoencoder



Linear Factor Model versus AutoEncoder
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Linear Factor Model versus AutoEncoder
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Latent Factor space

its (time-derivative) dynamics will be learned



Linear Factor Model versus AutoEncoder
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● Learning the latent space manifold via autoencoder:

 Let                                     be an “Encoder” and                                      be a “Decoder” functions

From Linear Model to Neural Network

Linear subspace projection: Nonlinear projection:

Kim et al. (2022)



● Learning the latent space manifold via autoencoder:

 Let                                     be an “Encoder” and                                      be a “Decoder” functions

From Linear Model to Neural Network
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● Learning the latent space manifold via autoencoder:

 Let                                     be an “Encoder” and                                      be a “Decoder” functions

● Loss:

                                    may not work well.

-  Add a regularization term, or learn Denoising autoencoder, which became a key concept in generative models

Autoencoders

From Linear Model to Neural Network Goodfellow et al. (2016)



● Learning the latent space manifold via autoencoder:

 Let                                     be an “Encoder” and                                      be a “Decoder” functions

● Loss:

                                    may not work well.

-  Add a regularization term, or learn Denoising autoencoder, which became a key concept in generative models

- Auto-decoding: use a Decoder to encode by solving

Autoencoders

From Linear Model to Neural Network Park et al. (2019)



Learning Latent Dynamics



Neural ODEs

Recent advances in Scientific Machine Learning

● Instead of specifying a discrete sequence of hidden layers, 

Neural ODEs parameterize the derivative of the hidden state 

using a neural network

● The function f describes (determines) how the latent state 

changes in time, which is completely unknown.

● Apply numerical time integrators to evolve u_hat. 

Alternatively, one can directly learn 

Chen et al. (2019), Bilos et al. (2021)



Learning: 

● Combined with Decoder,

Neural ODEs

Generative latent function time-series model

● Once        is learned, we can evolve the latent state via ODE 

solver.

● Each trajectory is determined from initial latent state        

and a set of latent dynamics shared across all time series.

● A generative model can be obtained by sampling 

● Then, 

Chen et al. (2019)



Time-series Latent ODE Experiment

A. RNN with 25 hidden units 

B. NODE model with 4-dimensional latent space, f and a decoder 

parametrized by one-hidden-layer with 20 hidden units 

respectively.

A dataset of 1000 2-dimensional spirals (clockwise and 

counter-clockwise), each starting at a different point, sampled at 100 

timesteps, with gaussian noise added.

(a, b) Reconstruction and extrapolation, (c) A projection of 

4-dimensional latent ODE trajectories onto their first two dimensions, 

colored by the two different direction

Chen et al. (2019)



Time-series Latent ODE Experiment

● Data-space trajectories decoded from varying one dimension of 

● The latent trajectories change smoothly as a function of the initial point        , switching from clockwise to counter clockwise

● Color indicates progression through time, starting at purple. 

Chen et al. (2019)



Extra Topics on Recent Advances in 
Scientific Machine Learning



Space and time continuous models and their generalization towards robustness in extrapolation.

1. Operator Learning: DeepONet (DO) and Neural Operator (NO)

➔ Given function (e.g. initial condition) as input, return solution function.

2. Implicit Neural Representation (INR)

➔ INR is a coordinate-based neural networks, using sinusoidal filters to capture signals. 

➔ DINo (Yin 2023) integrates INR as a decoder to approximate functions independently of the 

observation grid, while leveraging latent state dynamics to model the temporal evolution of 

solution states.

Recent advances in Scientific Machine Learning



NN as a Function Operator

Recent advances in Scientific Machine Learning

● Initial Value Problem.

● DeepONet

○ Integrates two distinct NNs

○ Branch network is a vector valued NN

○ Trunk network is a vector valued NN defined on 

➔

Lu et al. (2021), Lee and Shin (2023)



Learning parameters

Recent advances in Scientific Machine Learning Ha et al. (2016), Sitzmann et al. (2020)

● Hypernetworks are neural networks that generate 
weights for another neural network. 

input layer: vector x
input dimension: m 

Simple NN model with one layer
Learns W and b

output layer: y =       Wx+b
output dimension: m’ 

Learn an image by getting coordinates as input 
and three color channels as output. Then, image 
is a function itself.
Learn multiple images by learning parameter       
for each image.



Neural Operator 

Recent advances in Scientific Machine Learning

Then, the integral operator is a Convolution ftn

Learns the kernel function

Kovachki et al. (2023)

Learns

Nothing  depends on J

Idea of spatial generalization:



Implicit Neural Representation

Recent advances in Scientific Machine Learning Yin (2023), Kim (2024)

● The coordinate-based neural network solution (decoder output) is conditionally defined based on the 

low-dimensional latent state.

● The parametrized neural ODE (PNODE) learns different trajectories of latent states for each PDE parameter.

● Sinusoidal filters are used to construct Fourier basis and efficiently capture the spatial signal.



References

- Y. Kim, Y. Choi, D. Widemann, T. Zohdi, A fast and accurate physics-informed neural network reduced order model with shallow masked 

autoencoder, Journal of Computational Physics, 451, 110841, 2022
- I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT press, 2016
- J. Park, P. Florence, J. Straub, R. Newcombe, S. Lovegrove, DeepSDF: Learning continuous signed distance functions for shape representation, 

CVPR, pp. 165–174, 2019
- R. Chen, Y. Rubanova, J. Bettencourt, D. Duvenaud, Neural ordinary differential equations, NeurIPS 31, pp. 6572–6583, 2018
- M. Bilos, J. Sommer, S. Rangapuram, T. Januschowski, S. Gunnemann, Neural Flows: Efficient Alternative to Neural ODEs, NeurIPS, 2021
- Lu, L., Jin, P., Pang, G. et al. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nat Mach 

Intell 3, pp. 218–229, 2021
- S. Lee and Y. Shin, On the training and generalization of deep operator networks, arXiv preprint, 2023
- D. Ha, A. Dai, Q. Le, HyperNetworks, ICLR, 2017
- V. Sitzmann, J. Martel, A. Bergman, D. Lindell, G. Wetzstein, Implicit neural representations with periodic activation functions, NeurIPS 33, pp. 

7462–7473, 2020
- N. Kovachki, Z. Li, B. Liu, K. Azizzadeneshell, K. Bhattacharya, A. Stuart, A. Anandkumar, Neural operator: Learning maps between function 

spaces, Journal of Machine Learning Research  24, 2023
- Y. Yin, M. Kirchmeyer, J. Franceschi, A. Rakotomamonjy, and P. Gallinari, Continuous PDE dynamics forecasting with implicit neural 

representations, In The Eleventh International Conference on Learning Representations, 2023
- M. Kim, T. Wen, K. Lee, Y. Choi, Physics-informed reduced order model with conditional neural fields, NeurIPS 2024 Workshop on Machine 

Learning and the Physical Sciences, 2024

https://www.sciencedirect.com/science/article/pii/S0021999121007361
https://www.sciencedirect.com/science/article/pii/S0021999121007361
https://arxiv.org/abs/2412.05233

