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Data Observation

Figure: Three different step count data

I The motivation of this study is to cluster a large set of step
count data measured every minute from a wearable device.



Data Observation

Figure: Three different step count data

I High-Dimensional and discrete

I Zero-inflated with numerous moments people taking a break
between each step.

I 19604 days over 79 people item



Motivation

Figure: Thick Pen Transform with various thickness and shape

I Multi-scale Visualization of Time Series data

I Draw along the points with a pen with its own shape and
thickness



Motivation

Definition (Ensemble Square pen)

Let T = {τi : i = 1, . . . , |T |} be the set of thickness parameters.
For each τi ∈ T , scaling factor γ, let Uτi

t and Lτit be the upper and
lower boundary of the area that is covered by a pen of thickness τi
while connecting the points (t,Xi )

n
t=1.

I Ensemble Square pen :

Uτ
t =

1

τ + 1

τ∑
i=0

max{Xt−i , . . . ,Xt+τ−i}+ τ\2γ

Lτt =
1

τ + 1

τ∑
i=0

min{Xt−i , . . . ,Xt+τ−i} − τ\2γ



Thick Pen Measure of Association

Definition (Thick Pen Measure of Association/TPMA)

To measure the overlap between the areas that are created by the
thick pen transforms of X and Y , define TPMA between X and Y
at time t, thickness τ as

ρτt (X ,Y ) =
min{Uτ

t (X ),Uτ
t (Y )} −max{Lτt (X ), Lτt (Y )}

max{Uτ
t (X ),Uτ

t (Y )} −min{Lτt (X ), Lτt (Y )}

This measure describes how the two time series appear to covary
when seen from the distance corresponding to thickness τ . A
natural averaged version of ρτt (X ,Y ) is

ρ̄τ1,n =
1

n

n∑
t=1

ρτt (X ,Y )



Similarity Measure

Figure: Six groups of synthetic data with different trends: (a)
normal, (b) cyclic, (c) increasing, (d) decreasing, (e) upward shift,
(f) downward shift.



Similarity Measure

Figure: Hierarchical
clustering dendrogram for
the TPMA result

Figure: Two data in group
(e) matched using the
TPMA by the DTW
algorithm



Similarity Measure

Group 1 2 3 4 5 6

DTW + TPMA 5 5 5 5 5 5
DTW + Euclidean 5 4 1 8 10 2

Euclidean 5 3 1 1 10 10

Table: Hierarchical clustering results

I Using the TPMA as a similarity measure not only correctly
identifies all clusters, but also groups Group (a) and (b), (c)
and (e), (d) and (f) together when we tend to cluster them
into three groups.



Similarity Measure

Figure: (a) Visualization of the overlapping areas between two
data, colored by blue and red respectively. (b) TPMA0 values

I Setting the lower bound of the pen to 0, we propose TPMA0

as a new similarity measure to deal with large-scale data
clustering.

(ρ0)τt (X ,Y ) =
min{Uτ

t (X ),Uτ
t (Y )}

max{Uτ
t (X ),Uτ

t (Y )}



Optimization problem
Going back to our similarity measure, note that

log {η(ui (t), uj(t))} = log
min{ui (t), uj(t)}
max{ui (t), uj(t)}

= −| log
ui (t)

uj(t)
|

holds for each time t.

maximize
P, µ

T∏
t=1

N∏
i=1

ητ (ui (t), µ(ci )(t))

⇐⇒ maximize
P, µ

T∑
t=1

N∑
i=1

log {ητ (ui (t), µ(ci )(t)))}

⇐⇒ minimize
P, µ

T∑
t=1

N∑
i=1

| log ui (t)− logµ(ci )(t))|

I Applying the k-medians algorithm to
{LUi : LUi = (log ui (t)), 1 ≤ i ≤ N} guarantees monotone
decrease in the cost function.



Optimization problem

With partition P and cluster prototypes M, we view clustering as
an optimization problem minimizing the following cost function,

W (P,M) =
K∑

c=1

∑
x∈Pc

d(x ,mc) =
T∑
t=1

N∑
i=1

| log ui (t)− logµ(ci )(t))|.

An iterative algorithm proceeds in two steps:

Update P: Given a set of cluster prototypes M, update P with

Pc = {xi : argmin
m∈M

d(xi ,m) = mc , i = 1, . . . ,N} for each c ∈ {1..K}.

Update M: Given a partition P, update M with

mc = argmin
m∈E

∑
x∈Pc

d(x ,m) for each c ∈ {1, . . . ,K}.



Clustering Algorithm

Step 1: Smooth and Transform the data via moving average
and the thick pen transformation to obtain the upper
boundaries {u1, . . . , uN}.

Step 2: Randomly initialize the cluster.

Step 3: For each cluster, obtain the cluster prototype as

mc := logµc = med{log u
(c)
1 , . . . , log u

(c)
nc }, c ∈ {1, 2, . . . ,K}

Step 4: Assign every curve to the cluster with the minimal L1
distance between the logarithm of the upper bounds of
the curve and cluster prototypes.

Step 5: Iterate Step 3 - Step 4 until no more curves are
regrouped.

Step 6: Repeat Step 2 - Step 5 for sufficiently many times
and get the final cluster with the minimum cost function.



Real Data Analysis

(a) Mean curves of step data for each
cluster

(b) Mean curves of step count data
(—) and the pen means (- - -) in
each group

Figure: Clustering results by using the TPT with τ = 30



Real Data Analysis

(a) Mean curves of step data for each
cluster (b) Mean curves of step count data

(—) and the pen means (- - -) in
each group

Figure: Clustering results by using the TPT with τ = 100



Real Data Analysis

I Group 1 (red) represents days with early wake-up, early sleep,
and a lot of walks, where only a few people, who may be early
birds, are included according to Figure 10.

I Group 2 (yellow) represents days with late rising and less
walks, which relatively differs in the shape a lot between the
τ = 30 and τ = 100 results.

I Group 3 (green) consists of the laziest days with the smallest
total steps while group 4 (sky-blue) keeps late hours. Both
groups have a large weekend proportion, where group 4 shows
the largest percentage of weekend days among six groups.

I Group 5 (blue) and 6 (pink) both show large amount of mean
step counts, with different average wake-up times. The
distribution of individuals between group 5 and 6 is quite
different, which might represents two groups of people sharing
different office hours or morning routines.



Real Data Analysis

Cluster ID 1 2 3 4 5 6

Number of Days thickness
30 1377 2689 3057 3065 4119 5297

100 1649 3315 2298 3074 4225 5043

Mean Step Count thickness
30 11600 7433 2683 7303 10665 10925

100 11112 5904 1833 7392 12444 10101

Weekend (%) thickness
30 9.9 29.7 38.9 47.1 33.3 9.1

100 11.3 44.3 39.8 48.9 23.5 7.1

Table: Summary of clustering results



Real Data Analysis

Figure: Map of the distribution of individuals included in each
group



Simulation study
I We generate three different types of synthetic data to

compare the proposed clustering scheme with existing
methods: Sinusoidal data with different variability, Block data
with different patterns, and Block data with different amount
and patterns.

I Different optimization schemes are considered based on
k−medians or k−means algorithm respectively for L1 or L2
optimization.

I For the five iterative optimization settings, we repeat
algorithms N = 20 times and choose the cluster result with
the minimum cost.

I For functional clustering methods, we use (a) funFEM:
functional clustering using discriminative functional mixture
model by Bouveron, Come and Jacques (2014, [1]), and (b)
funHDDC: clustering functional data based on modeling each
group within a functional subspace by Bouveyron and Jacques
([2]).



Simulation study

Figure: Four groups of sinusoidal data with different variabilities.



Simulation study

Figure: Four groups of block data with different patterns.



Simulation study

Figure: Three groups of block data with different amount and
patterns.



Simulation study

Figure: Different optimization settings used for the comparison.



Simulation study

I The simulation results are based on the correct classification
rate (CCR) criteria defined as

CCR =
the number of correctly classified curves

total number of curves
.

I Overall, the proposed method, TPMA0 outperforms other
methods in our simulated data, suggesting that the measure
might be generally applied to cluster non-negative count data.

I For the five iterative optimization settings, we repeat
algorithms N = 20 times and choose the cluster result with
the minimum cost.

I However, applying L1 optimization to upper bounds worked as
well as the proposed method, which implies that taking
logarithms to the upper boundaries is not a critical choice for
the performance. We might skip that step when it is not
appropriate to apply log transform to the data.



Simulation study

Signal
Results for the following methods:

TPMA0 TP L1 TP L2 L1 L2 funFEM funHDDC

Sinusoidal
1.00
(0)

1.00
(0)

0.68
(0.09)

0.64
(0.09)

0.71
(0.05)

0.92
(0.14)

0.76
(0.16)

Block
(pattern)

0.94
(0)

0.92
(0)

0.88
(0.01)

0.77
(0.02)

0.78
(0.01)

0.83
(0.11)

0.83
(0.08)

Block
(pattern and amount)

1.00
(0)

0.99
(0)

0.97
(0)

0.74
(0.01)

0.80
(0.01)

0.91
(0)

0.91
(0.03)

Table: Means (standard deviations) of the correct classification
rate (CCR) for each method



Conclusion

I TPMA has its strength in the use of the novel thick pen
transformation, which is visually inspiring multi-scale method,
representing time-series dependence structure.

I Moreover, since the measure is computed coordinate-wise, we
can also employ the dynamic time warping algorithm, one of
the most widely-used and effective time-series matching
algorithm.

I To overcome the computation issue, we have proposed a
simple and effective algorithm applicable to the new similarity
measure, TPMA0, which is a special form of the TPMA.

I We examine that the proposed method can be applied in
general for time series data distributed on the same side along
the axis, whose similarities are measurable in the form of a
proportion of overlapping areas.
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