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Imposing exact initial and boundary conditions

• 𝜙 𝑥, 𝑡 = 0 holds	on	initial	and	boundary	sets
• 𝜓, 𝜃: parameters	for	decoder	and	PNODE,	respectively
• 𝐶!: collocation points 𝐶": inner collocation points
• 𝑁!: # collocation points 𝑁": # inner collocation points

➤ Train 𝑣 𝑥, 𝑡, 𝜇 = 𝐷! 𝑥, 𝛽",$ via

➤Derivatives of 𝑣 𝑥, 𝑡 do not suffer from ADF issue anymore.

Summary: We introduce CNF-ROM structure and its physics-informed learning objective to produce approximate solutions of
spatio-temporal governing PDEs parametrized by 𝜇.
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CNF-ROM

PINNs objective
• PDE residual loss is available for CNF-ROM: automatic differentiation for spatial 

derivatives and the chain rule for time derivatives!

How to train?
We propose simultaneous learning objectives for both decoder and PNODE parameters.

CNF-ROM structure
• Learn coordinate-based NN to approximate parametrized PDE solution.
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• The coordinate-based solution (decoder output) is conditionally defined 
based on the low-dimensional latent state 𝛼 ∈ ℝ1' .

• The parametrized neural ODE (PNODE) learns different velocities (trajectories) 
of latent states for each 𝜇.

🔍

Limitation of Physics-informed Neural Networks (PINNs)
• Initial and boundary conditions (IC, BC) are not strictly met when added as loss terms. 
➥ We introduce an approximate distance function to impose hard constraints.

Limitation of R-function-based approximate distance function (ADF, 𝝓)
• The second and higher-order derivatives of 𝜙 explode at the joining points of boundaries. 
➥ We introduce an auxiliary CNF-ROM 𝑣(𝑥, 𝑡, 𝜇) to learn the first derivatives of )𝑢.
➥ Any second or higher-order derivatives of )𝑢 are approximated using the derivatives of 𝑣.
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Proposed Method

Trade-offs in imposing exact IC/BC ([2])
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• For data loss, solution data 𝑢 𝑥, 𝑡, 𝜇 on collocation points are given.
• For PINN loss, ℱ is PDE residual function and 𝑣 is used for second or larger order derivatives.

Results

Fine-tuning performance:  parameter inter/extrapolation, time extrapolation
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Heatmaps for the loss for (a, left) and (b, right)  when 𝜇 = 15 (top), 20 (bottom) 
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Scenario (a) Pre-training with data:   𝐿data 𝜓, 𝜃 + 𝐿deriv(𝜉, 𝜃)
Scenario (b) Fine-tuning with PINN: 𝐿PDE 𝜃 + 𝐿deriv(𝜃)

PINN as fine-tuning objective; to learn without data

• time > 1 corresponds to the time extrapolation region

Loss trajectory for (a) → (b)

• Only update PNODEs parameter for fine-tuning, with the ROM perspective


