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Introduction

The ultimate goal of this study is to understand the behavior of large-scale fine particulate

matter (PM2.5) data. We aim to find the hidden factor structure of large spatio-temporal data
based on a quantile factor model (QFM) that admits cross-sectional and serial dependence

and heteroscedasticity ([2]).

A novel quantile factor model is carried out for spatio-temporal analysis of PM2.5 values to
reduce the dimension of the data while summarizing the relations among multivariate time

series data. Also, we further expand it to some extremal levels that capture the tail variables

of the data and estimate the entire conditional distribution of PM2.5 values

Quantile Factor Model

We consider a model,

X = FτΛT
τ + ντ for τ ∈ (0, 1),

where Fτ = [f1(τ ), . . . , fT (τ )]T is a T × r matrix of factors and Λτ = [λ1(τ ), . . . , λN (τ )]T is an
N × r matrix of factor loadings for r factors.

The idiosyncratic error νit(τ ) = (ντ )it is assumed to satisfy P [νit(τ ) ≤ 0|ft(τ )] = τ , implying
the conditional quantile function of Xit = (X)it is

QXit
[τ |ft(τ )] = λi(τ )T ft(τ ).

The parameters in the model are estimated by simultaneously minimizing the objective

function,

SNT (F, Λ) = 1
NT

T∑
t=1

N∑
i=1

ρτ (Xit − λT
i ft)

under the condition 1
T F T

τ Fτ = Ir̂ and ΛT
τ Λτ is a diagonal matrix with non-increasing elements.

Extremal Quantile

Extreme modeling is of high interest in analyzing climate data.

Let Fit be the distribution of Xit which satisfies that for random samples {Zm}n
m=1 from Fit,

there exists sequences {an} and {bn} such that

P(a−1
n ( max

1≤m≤n
Zm − bn) ≤ z) → exp(−(1 + γz)−1/γ)

as n grows to infinity for some γ and z such that 1 + γz ≥ 0.
Then, the extremal level quantile τex of a random variable Y can be estimated as

Q̂τex(Y ) =
(

1 − τ0
1 − τex

)γ

Q̂τ0(Y )

using intermediate quantile estimates Q̂τ0(Y ) from the QFM result ([5]).
For estimation of the tail index γi at the ith station, we use Hill estimator with the ordered
statistics of {Xit}T

t=1, {Xi(j)}T
j=1.

Thus, γi is estimated as

γ̂i = 1
k

k∑
j=1

log Xi(j) − log Xi(k)

for a suitable k. Motivated from [5], we consider k = [cT 1/3] with various values of c, and
choose the best one using five-fold cross-validation.

The estimated number of common factors set to 2 for τ ∈ Tl, and the validation procedure

choose c = 2 for estimating the tail index by the Hill estimator.

The Analysis Procedure

1. Impute missing values

2. For each τ ∈ T = {0.05l; 1 ≤ l ≤ 19}, initialize F̂
(0)
τ using the principal component

estimates subject to the normalization 1
T F T

τ Fτ = Ir.

3. Iterate (a) and (b) until SNT (Fτ , Λτ ) converges for each τ ∈ T .

(a) Given F̂
(m)
τ , perform quantile regression of {Xit}T

t=1 on F̂
(m)
τ to estimate λ̂

(m+1)
i for i = 1, 2, . . . , N .

(b) Given Λ̂(m+1)
τ , use quantile regression of {Xit}N

i=1 on Λ̂(m+1)
τ to estimate f̂

(m+1)
t for t = 1, 2, . . . , T .

4. Normalize the estimators.

5. Sort the quantiles for τ ∈ T in an increasing order.

6. Estimate upper extreme quantiles Q̂it(τ ) for τ ∈ Tex based on τ0 = 0.95.

7. Linearly interpolate (Q̂∗
it(τ ))τ∈T ∪Tex

to obtain the quantile process τ 7→ Q̂∗
it(τ )

8. Estimate the distribution function as F̂it = (Q̂∗
it)

−1

Note that the initial estimate F̂ (0) in Step 1. is
√

T times the r largest eigenvalues of XT X

([1]). Also, the normalization in Step 4. can be done with the rotation matrix
√

T (F T
τ Fτ )−

1
2Pτ ,

where Pτ is the matrix of eigenvectors of (F T
τ Fτ )

1
2(ΛT

τ Λτ )(F T
τ Fτ )

1
2 ([3]).

Data Pre-processing

In this study, we analyze the daily average of PM2.5 data observed at N = 103 stations in
Korea for T = 1825 times from 2015.01.01 to 2019.12.31.
First decompose Y (s, t), the observed PM2.5 value at location s ∈ {1, 2, . . . , N} and time
t ∈ {1, 2, . . . , T}, into a mean effect µ(s, t) and the anomaly X(s, t), i.e.

Y (s, t) = µ(s, t) + X(s, t).

Estimate µ(s, t) by computing the temperature average for each specific place and each time
of the year, and then smooth the estimated mean by computing, for each grid cell separately,

a moving average over windows of size 6. We focus on analyzing the anomalies X(s, t)
obtained as

X(s, t) = Y (s, t) − µ̂(s, t)

Results

(a) Empirical CDF

values at the station 4

(b) Marking observations bigger than 99% quantile values for each place in Seoul

Figure: Information about empirical CDF values bigger than 99%

Figure 1 (a) displays the empirical CDF value of each observation at Gwangjin-gu district, i.e.

probabilities of Xit being less than or equal to the observed anomalies based on the

estimated distribution function F̂it = (Q̂it)−1. The red line denotes a probability of 0.99.
Figure 1 (b) plots such observations bigger than estimated 99% quantile values for each

station in Seoul, where 25 stations are located as in Figure 3. Each row represents each

station. As we can see in both (a) and (b), extreme PM2.5 concentration are frequently
observed at Gwangjin-gu, located at the right side of Seoul, in Mid-2019. As such, we can

identify and compare periods showing excessive particulate matter anomalies differently

distributed by place, providing information on the trends beyond the means.

(a) 1st factor result (b) 3rd factor result

Figure: Factors and loadings distributed in Seoul: τ = 5%(up) and τ = 95%(down)

Figure 2 shows the spatial distribution of two factor loadings at τ = 0.05, 0.95 around Seoul.
Each station represents each district. Factor loadings are coefficient values representing each

region's degree of response as the factor score values change over time. Plots on the right

side of the figure are temporal plots of factor scores at τ = 0.05, 0.95. When factors show
similar trends in time over several quantiles, the different distribution of loading values over

those quantiles represents the difference in regional sensitivities, that is, each region's degree

of response as the quantiles change. Moreover, we observe that the third factor shows

different factor trends between the quantiles τ = 0.05 and τ = 0.95, implying there exist
different time factors responsible for the extremal events.

Figure: Log counts of extremes at τ = 0.95 (left) and τ = 0.9995 (right) in Seoul

Upper extreme quantiles providing information needed for estimating the whole distribution,

we further suggest new statistics to analyze the extremal behavior. For example, to evaluate

whether the degree of occurrence of extreme conditions varies by region, Figure 3 shows the

number of extreme events occurring in Seoul. Let Nex(i; u, τ ) be the count of the extremes,

Nex(i; u, τ ) =
∑

t

I(Q̂it(τ ) > u) = |Ti;τ,u|

, where Ti;τ,u = {t : Q̂it(τ ) > u} at station i. Figure 3 shows the values of log10 (1 + Nex) with
u = 40 and τ = 0.95, 0.9995. We observe that the spatial distributions of the values between
the two extremal quantiles are different. For the station 8, for instance, observe |T8;0.95,40| is
relatively small, while |T8;0.9995,40| relatively large. T8;0.95,40 ⊂ T8;0.9995,40 implies there are
relatively many elements in the set T8;0.9995,40 − T8;0.95,40. As such, we can explore local
characteristics of tail distributions by applying several u and τ values.

Overall, the proposed QFM-based analysis is useful in analyzing spatio-temporal data with de-

pendency structures, offering complete estimates and valuable insights beyond the mean. The

analysis could further be expanded to predict the missing outcomes or forecast future trends.
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